skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kramer, Boris"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We present a scalable tensor-based approach to computing input-normal/output-diagonal nonlinear balancing transformations for control-affine systems with polynomial nonlinearities. This transformation is necessary to determine the states that can be truncated when forming a reduced-order model. Given a polynomial representation for the controllability and observability energy functions, we derive the explicit equations to compute a polynomial transformation to induce input-normal/output-diagonal structure in the energy functions in the transformed coordinates. The transformation is computed degree-by-degree, similar to previous Taylor-series approaches in the literature. However, unlike previous works, we provide a detailed analysis of the transformation equations in Kronecker product form to enable a more scalable implementation. We derive the explicit algebraic structure for the equations, present rigorous analyses for the solvability and algorithmic complexity of those equations, and provide general purpose open-source software implementations for the proposed algorithms to stimulate broader use of nonlinear balanced truncation model reduction. We demonstrate that with our efficient implementation, computing the nonlinear transformation is approximately as expensive as computing the energy functions using state-of-the-art methods. 
    more » « less
    Free, publicly-accessible full text available October 1, 2026
  2. Free, publicly-accessible full text available July 1, 2026
  3. This paper presents a scalable tensor-based approach to computing controllability and observability-type energy functions for nonlinear dynamical systems with polynomial drift and linear input and output maps. Using Kronecker product polynomial expansions, we convert the Hamilton- Jacobi-Bellman partial differential equations for the energy functions into a series of algebraic equations for the coefficients of the energy functions. We derive the specific tensor structure that arises from the Kronecker product representation and analyze the computational complexity to efficiently solve these equations. The convergence and scalability of the proposed energy function computation approach is demonstrated on a nonlinear reaction-diffusion model with cubic drift nonlinearity, for which we compute degree 3 energy function approximations in n = 1023 dimensions and degree 4 energy function approximations in n = 127 dimensions. 
    more » « less
  4. Free, publicly-accessible full text available May 1, 2026
  5. This review discusses Operator Inference, a nonintrusive reduced modeling approach that incorporates physical governing equations by defining a structured polynomial form for the reduced model, and then learns the corresponding reduced operators from simulated training data. The polynomial model form of Operator Inference is sufficiently expressive to cover a wide range of nonlinear dynamics found in fluid mechanics and other fields of science and engineering, while still providing efficient reduced model computations. The learning steps of Operator Inference are rooted in classical projection-based model reduction; thus, some of the rich theory of model reduction can be applied to models learned with Operator Inference. This connection to projection-based model reduction theory offers a pathway toward deriving error estimates and gaining insights to improve predictions. Furthermore, through formulations of Operator Inference that preserve Hamiltonian and other structures, important physical properties such as energy conservation can be guaranteed in the predictions of the reduced model beyond the training horizon. This review illustrates key computational steps of Operator Inference through a large-scale combustion example. 
    more » « less
  6. We present a scalable approach to computing nonlinear balancing energy functions for control-affine systems with polynomial nonlinearities. Al’brekht’s powerseries method is used to solve the Hamilton–Jacobi– Bellman equations for polynomial approximations to the energy functions. The contribution of this article lies in the numerical implementation of the method based on the Kronecker product, enabling scalability to over 1000 state dimensions. The tensor structure and symmetries arising from the Kronecker product representation are key to the development of efficient and scalable algorithms.We derive the explicit algebraic structure for the equations, present rigorous theory for the solvability and algorithmic complexity of those equations, and provide general purpose open-source software implementations for the proposed algorithms. The method is illustrated on two simple academic models, followed by a high-dimensional semidiscretized PDE model of dimension as large as n = 1080. 
    more » « less